Copied to
clipboard

G = C23×F8order 448 = 26·7

Direct product of C23 and F8

direct product, metabelian, soluble, monomial, A-group

Aliases: C23×F8, C261C7, C252C14, C24⋊(C2×C14), C23⋊(C22×C14), SmallGroup(448,1392)

Series: Derived Chief Lower central Upper central

C1C23 — C23×F8
C1C23F8C2×F8C22×F8 — C23×F8
C23 — C23×F8
C1C23

Generators and relations for C23×F8
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g7=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, gdg-1=fe=ef, geg-1=d, gfg-1=e >

Subgroups: 2969 in 463 conjugacy classes, 48 normal (6 characteristic)
C1, C2, C2, C22, C22, C7, C23, C23, C14, C24, C24, C2×C14, C25, C25, F8, C22×C14, C26, C2×F8, C22×F8, C23×F8
Quotients: C1, C2, C22, C7, C23, C14, C2×C14, F8, C22×C14, C2×F8, C22×F8, C23×F8

Smallest permutation representation of C23×F8
On 56 points
Generators in S56
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 45)(9 46)(10 47)(11 48)(12 49)(13 43)(14 44)(22 31)(23 32)(24 33)(25 34)(26 35)(27 29)(28 30)(36 53)(37 54)(38 55)(39 56)(40 50)(41 51)(42 52)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 36)(15 33)(16 34)(17 35)(18 29)(19 30)(20 31)(21 32)(43 52)(44 53)(45 54)(46 55)(47 56)(48 50)(49 51)
(1 11)(2 12)(3 13)(4 14)(5 8)(6 9)(7 10)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 40)(23 41)(24 42)(25 36)(26 37)(27 38)(28 39)(29 55)(30 56)(31 50)(32 51)(33 52)(34 53)(35 54)
(1 11)(2 21)(3 42)(4 44)(5 54)(6 29)(7 28)(8 35)(9 55)(10 39)(12 49)(13 24)(14 16)(15 52)(17 37)(18 27)(19 30)(20 48)(22 40)(23 32)(25 53)(26 45)(31 50)(33 43)(34 36)(38 46)(41 51)(47 56)
(1 22)(2 12)(3 15)(4 36)(5 45)(6 55)(7 30)(8 17)(9 29)(10 56)(11 40)(13 43)(14 25)(16 53)(18 38)(19 28)(20 31)(21 49)(23 41)(24 33)(26 54)(27 46)(32 51)(34 44)(35 37)(39 47)(42 52)(48 50)
(1 31)(2 23)(3 13)(4 16)(5 37)(6 46)(7 56)(8 26)(9 18)(10 30)(11 50)(12 41)(14 44)(15 43)(17 54)(19 39)(20 22)(21 32)(24 42)(25 34)(27 55)(28 47)(29 38)(33 52)(35 45)(36 53)(40 48)(49 51)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)

G:=sub<Sym(56)| (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,45)(9,46)(10,47)(11,48)(12,49)(13,43)(14,44)(22,31)(23,32)(24,33)(25,34)(26,35)(27,29)(28,30)(36,53)(37,54)(38,55)(39,56)(40,50)(41,51)(42,52), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36)(15,33)(16,34)(17,35)(18,29)(19,30)(20,31)(21,32)(43,52)(44,53)(45,54)(46,55)(47,56)(48,50)(49,51), (1,11)(2,12)(3,13)(4,14)(5,8)(6,9)(7,10)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,40)(23,41)(24,42)(25,36)(26,37)(27,38)(28,39)(29,55)(30,56)(31,50)(32,51)(33,52)(34,53)(35,54), (1,11)(2,21)(3,42)(4,44)(5,54)(6,29)(7,28)(8,35)(9,55)(10,39)(12,49)(13,24)(14,16)(15,52)(17,37)(18,27)(19,30)(20,48)(22,40)(23,32)(25,53)(26,45)(31,50)(33,43)(34,36)(38,46)(41,51)(47,56), (1,22)(2,12)(3,15)(4,36)(5,45)(6,55)(7,30)(8,17)(9,29)(10,56)(11,40)(13,43)(14,25)(16,53)(18,38)(19,28)(20,31)(21,49)(23,41)(24,33)(26,54)(27,46)(32,51)(34,44)(35,37)(39,47)(42,52)(48,50), (1,31)(2,23)(3,13)(4,16)(5,37)(6,46)(7,56)(8,26)(9,18)(10,30)(11,50)(12,41)(14,44)(15,43)(17,54)(19,39)(20,22)(21,32)(24,42)(25,34)(27,55)(28,47)(29,38)(33,52)(35,45)(36,53)(40,48)(49,51), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)>;

G:=Group( (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,45)(9,46)(10,47)(11,48)(12,49)(13,43)(14,44)(22,31)(23,32)(24,33)(25,34)(26,35)(27,29)(28,30)(36,53)(37,54)(38,55)(39,56)(40,50)(41,51)(42,52), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,36)(15,33)(16,34)(17,35)(18,29)(19,30)(20,31)(21,32)(43,52)(44,53)(45,54)(46,55)(47,56)(48,50)(49,51), (1,11)(2,12)(3,13)(4,14)(5,8)(6,9)(7,10)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,40)(23,41)(24,42)(25,36)(26,37)(27,38)(28,39)(29,55)(30,56)(31,50)(32,51)(33,52)(34,53)(35,54), (1,11)(2,21)(3,42)(4,44)(5,54)(6,29)(7,28)(8,35)(9,55)(10,39)(12,49)(13,24)(14,16)(15,52)(17,37)(18,27)(19,30)(20,48)(22,40)(23,32)(25,53)(26,45)(31,50)(33,43)(34,36)(38,46)(41,51)(47,56), (1,22)(2,12)(3,15)(4,36)(5,45)(6,55)(7,30)(8,17)(9,29)(10,56)(11,40)(13,43)(14,25)(16,53)(18,38)(19,28)(20,31)(21,49)(23,41)(24,33)(26,54)(27,46)(32,51)(34,44)(35,37)(39,47)(42,52)(48,50), (1,31)(2,23)(3,13)(4,16)(5,37)(6,46)(7,56)(8,26)(9,18)(10,30)(11,50)(12,41)(14,44)(15,43)(17,54)(19,39)(20,22)(21,32)(24,42)(25,34)(27,55)(28,47)(29,38)(33,52)(35,45)(36,53)(40,48)(49,51), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56) );

G=PermutationGroup([[(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,45),(9,46),(10,47),(11,48),(12,49),(13,43),(14,44),(22,31),(23,32),(24,33),(25,34),(26,35),(27,29),(28,30),(36,53),(37,54),(38,55),(39,56),(40,50),(41,51),(42,52)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,36),(15,33),(16,34),(17,35),(18,29),(19,30),(20,31),(21,32),(43,52),(44,53),(45,54),(46,55),(47,56),(48,50),(49,51)], [(1,11),(2,12),(3,13),(4,14),(5,8),(6,9),(7,10),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,40),(23,41),(24,42),(25,36),(26,37),(27,38),(28,39),(29,55),(30,56),(31,50),(32,51),(33,52),(34,53),(35,54)], [(1,11),(2,21),(3,42),(4,44),(5,54),(6,29),(7,28),(8,35),(9,55),(10,39),(12,49),(13,24),(14,16),(15,52),(17,37),(18,27),(19,30),(20,48),(22,40),(23,32),(25,53),(26,45),(31,50),(33,43),(34,36),(38,46),(41,51),(47,56)], [(1,22),(2,12),(3,15),(4,36),(5,45),(6,55),(7,30),(8,17),(9,29),(10,56),(11,40),(13,43),(14,25),(16,53),(18,38),(19,28),(20,31),(21,49),(23,41),(24,33),(26,54),(27,46),(32,51),(34,44),(35,37),(39,47),(42,52),(48,50)], [(1,31),(2,23),(3,13),(4,16),(5,37),(6,46),(7,56),(8,26),(9,18),(10,30),(11,50),(12,41),(14,44),(15,43),(17,54),(19,39),(20,22),(21,32),(24,42),(25,34),(27,55),(28,47),(29,38),(33,52),(35,45),(36,53),(40,48),(49,51)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)]])

64 conjugacy classes

class 1 2A···2G2H···2O7A···7F14A···14AP
order12···22···27···714···14
size11···17···78···88···8

64 irreducible representations

dim111177
type++++
imageC1C2C7C14F8C2×F8
kernelC23×F8C22×F8C26C25C23C22
# reps1764217

Matrix representation of C23×F8 in GL9(ℤ)

-100000000
0-10000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001
,
-100000000
010000000
00-1000000
000-100000
0000-10000
00000-1000
000000-100
0000000-10
00000000-1
,
-100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001
,
100000000
010000000
001000000
000-100000
0000-10000
00000-1000
000000100
0000000-10
000000001
,
100000000
010000000
00-1000000
000-100000
0000-10000
000001000
000000-100
000000010
000000001
,
100000000
010000000
00-1000000
000-100000
000010000
00000-1000
000000100
000000010
00000000-1
,
100000000
010000000
000100000
000010000
000001000
000000100
000000010
000000001
001000000

G:=sub<GL(9,Integers())| [-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;

C23×F8 in GAP, Magma, Sage, TeX

C_2^3\times F_8
% in TeX

G:=Group("C2^3xF8");
// GroupNames label

G:=SmallGroup(448,1392);
// by ID

G=gap.SmallGroup(448,1392);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,2,2,515,1202,1742]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,g*d*g^-1=f*e=e*f,g*e*g^-1=d,g*f*g^-1=e>;
// generators/relations

׿
×
𝔽